Share this page
Subjects and topics in this lesson plan
Subjects
Topics
Lesson Plan

Biotechnology: Gene Therapy and Gene Editing

About this Video
This 13-minute video introduces students to the historical context, scientific procedures and social controversy surrounding the emerging medical technologies of gene therapy and gene editing, including CRISPR Cas-9. Tracing the progression of discoveries and setbacks that have charted the growth of medical biotechnology in recent decades, it combines complex scientific explanation with engaging interviews of patients and researchers. Useful as a way to introduce any lesson on medical biotechnology, the video also sets up a class discussion on the varying risks and prospects of gene therapy vs. gene editing, as well as the potential ethical challenges and public fears associated with biotechnology.
Objectives
  • How researchers are pioneering the medical applications of biotechnology.
  • How gene therapy and gene editing represent different approaches to curing diseases.
  • How patients, the public and scientists are confronting the risks, complexities, and ethical challenges surrounding innovations in biotechnology.
Subjects
  • Science
  • Biology
Topics
  • Cultural and Social Change
  • The Modern Era (1980-Present)
  • Genetics
For Teachers
Introducing the Lesson

The promise of CRISPR to edit out disease-causing genes has caused a lot of excitement but it’s just the latest attempt by scientists to fix the genes that make us sick.

Over 30 years ago, another form of genetic engineering was making headlines: gene therapy, a procedure that injected healthy genes into cells to help damaged ones.

In 1990, it was first used to treat a rare genetic disorder that crippled a four-year-old girl’s immune system.

The results were striking. As the girl’s immune system improved, she was albe to go outside and eventually attend school.

That brought the gene therapy revolution alive, with hopes to cure a range of diseases like diabetes, sickle cell anemia and muscular dystrophy.

Those expectations grew as the Human Genome Project, the national effort to find and sequence all human genes, uncovered more genes that caused hereditary diseases.

But in 1999, the attempt to deliver a healthy gene into an 18-year-old boy to treat a rare liver disease went terribly wrong. His death led to a precipitous decline in the field.

Today, 20 years later, gene therapy is back. In 2017, the Food and Drug Administration approved for the first time a gene therapy treatment for a form of childhood leukemia, and again raised hopes.

Unfortunately, gene therapy doesn’t actually fix broken genes, so no one knows how long the benefits will last. That is why there is new optimism around CRISPR – as well as a sense of caution that comes with any new cutting-edge technology.

Essential Questions
  • How could CRISPR be used to cure a disease like sickle cell anemia?
  • How is gene therapy different from gene editing?
  • How are vectors used in gene therapy? How can they create problems for patients?
  • How have researchers worked to mitigate the risks posed by vectors?
Lesson Procedure
  • In your opinion, which emerging biotechnology holds greater potential to cure diseases, gene therapy or gene editing? Why?
  • In your opinion, which emerging technology is more likely to create social controversy and turmoil, gene therapy or gene editing? Why?
  • Why does the potential power of tools like CRISPR create public fears over genetic engineering, and create ethical challenges for scientists? In your opinion, what concerns surrounding CRISPR and biotechnology are probably exaggerated? What concerns are more valid and deserve our attention?
  • Is there a danger of excessive exuberance in the early stages of a new technology? Are trained scientists immune to this exuberance?
Additional Resources
Transcript for "Fixing the Code: Genetically Engineering Your DNA to Cure Disease" Retro Report

Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

HS-LS3-1: Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed on from parents to offspring.

Skill 1.C: Explain biological concepts in applied contexts.

Questions? Tips? Concerns? Reach out to our Director of Education, David Olson: dolson@retroreport.com